
Garbage Collection and Efficiency in Dynamic
Metacircular Runtimes

An Experience Report

Javier Pimás
Palantir Solutions

Buenos Aires, Argentina
javierpimas@gmail.com

Javier Burroni
Palantir Solutions

Buenos Aires, Argentina
javier.burroni@gmail.com

Jean Baptiste Arnaud
Palantir Solutions

Buenos Aires, Argentina
jbarnaud@caesarsystems.com

Stefan Marr
Johannes Kepler University

Linz, Austria
stefan.marr@jku.at

Abstract
In dynamic object-oriented languages, low-level mechanisms
such as just-in-time compilation, object allocation, garbage
collection (GC) and method dispatch are often handled by
virtual machines (VMs). VMs are typically implemented us-
ing static languages, allowing only few changes at run time.
In such systems, the VM is not part of the language and
interfaces to memory management or method dispatch are
fixed, not allowing for arbitrary adaptation. Furthermore, the
implementation can typically not be inspected or debugged
with standard tools used to work on application code.

This paper reports on our experience building Bee, a dy-
namic Smalltalk runtime, written in Smalltalk. Bee is a Dy-
namic Metacircular Runtime (DMR) and seamlessly inte-
grates the VM into the application and thereby overcomes
many restrictions of classic VMs, for instance by allowing
arbitrary code modifications of the VM at run time. Further-
more, the approach enables developers to use their standard
tools for application code also for the VM, allowing them to
inspect, debug, understand, and modify a DMR seamlessly.
We detail our experience of implementing GC, compi-

lation, and optimizations in a DMR. We discuss examples
where we found that DMRs can improve understanding of
the system, provide tighter control of the software stack, and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
DLS’17, October 24, 2017, Vancouver, Canada
© 2017 Copyright held by the owner/author(s). Publication rights licensed
to the Association for Computing Machinery.
ACM ISBN 978-1-4503-5526-1/17/10. . . $15.00
https://doi.org/10.1145/3133841.3133845

facilitate research. We also show that in high-level bench-
marks the Bee DMR performance is close to that of a widely
used Smalltalk VM.

CCS Concepts • Software and its engineering → Ob-
ject oriented languages;Runtime environments;Garbage
collection; Dynamic compilers;

Keywords runtimes, dynamic, metacircular, gc, efficiency

ACM Reference Format:
Javier Pimás, Javier Burroni, Jean Baptiste Arnaud, and Stefan Marr.
2017. Garbage Collection and Efficiency in Dynamic Metacircular
Runtimes: An Experience Report. In Proceedings of 13th ACM SIG-
PLAN International Symposium on Dynamic Languages (DLS’17).
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3133841.
3133845

1 Introduction
Over the last few decades, more and more kinds of applica-
tions arewritten in high-level languages. Over time this trend
slowly reached virtual machine development, too. Engineers
who previously wrote most code in assembly started migrat-
ing to languages like C and C++ to take advantage of their fea-
tures and abstractions. The trend did not stop with systems
programming languages however. Some developers wanted
to make use of the advantages that the languages they im-
plemented provided, and started implementing VMs in even
higher-level languages such as Java [1, 3, 34], Python [27],
JavaScript [7], and Smalltalk [15]. These projects proved that
self-hosted VMs can support the full set of features of object-
oriented (OO) languages. However, while for instance PyPy,
Tachyon and Squeak were written in dynamic languages that
allow changing code at run time, none of those projects allow
changing the VM itself at run time. They do not integrate the
models of the VM and the hosted language. Instead, they only
expose a restricted interface through which the language
and the VM communicate. The implementation details of

39

https://doi.org/10.1145/3133841.3133845
https://doi.org/10.1145/3133841.3133845
https://doi.org/10.1145/3133841.3133845
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3133841.3133845&domain=pdf&date_stamp=2017-10-24

DLS’17, October 24, 2017, Vancouver, Canada Javier Pimás, Javier Burroni, Jean Baptiste Arnaud, and Stefan Marr

these self-hosted VMs are static and mostly inaccessible at
high level.
This work pushes this trend even further: we implement

an OO VM in a highly dynamic language, Smalltalk, and
enable the modification of its components freely at run time,
as application-level objects in a Smalltalk system. We report
on our experience with a self-hosted OO VMs with the fol-
lowing characteristics: (i) it is dynamically typed, as defined
in the next section, (ii) it uses garbage collection, (iii) and it
facilitates changing code arbitrarily at run time. We refer to
systems with these properties as dynamic languages.

While there have been similar projects in the past, which
provided support for dynamic changes of the runtime [31,
33], none of them were able to create a complete VM that
supported all the features of the language it implemented
and run as fast as the original VMs. Specifically, they did
not implement a garbage collector (GC) in the language and
their performance was poor.

Until today, VMs for dynamic languages support only few
or no dynamic changes, even if the VMs were written in
dynamic languages. We address this situation in this paper.

Our experience report focuses on the following aspects:
• We identify the concept of dynamic metacircular run-
times (DMR) and we describe the problems that a DMR
implemented in a metacircular environment such as
Smalltalk has to solve to support all of the environment
features.

• We present a solution to these problems with our Bee1
runtime, which is a full-featured DMR for Smalltalk.
We report on our experience implementing different
GCs and the optimizations necessary to compete with
comparable VMs written in low-level languages.

• Furthermore, we discuss the advantages we found for
such a dynamic runtime and give examples where
these kinds of exploratory environments are beneficial
for analysis and research.

2 Dynamic Metacircular Environments
To provide context for this work, we first analyze the main
concepts covered in this paper.

2.1 Terminology and Main Concepts
This section defines what we refer to as dynamic languages.
It also describes self-hosting, metacircularity, and how these
concepts affect the implementation of VMs. Furthermore, it
reviews related work and identifies the problems that need to
be solved for dynamicmetacircular runtimes for metacircular
environments.

Common nomenclature. We use the word VM to refer to
the set of virtual machine components shown in figure 1.
Similarly, we use runtime to talk about the wider concept that

1http://beesmalltalk.org

primitives lookup
interpreter

or JIT
memory
manager

VM

Language-level objects

plain objects

Runtime system (b)

meta objects

lookup JIT
memory
manager

Language-level objects

plain objects

Runtime system (c)

meta objects

primitives lookup
interpreter

or JIT
memory
manager

VM

Language-level objects

Runtime system (a)

classes methods messages

plain objects

Figure 1.Different interfaces between language and runtime
in OO languages, ranging from little or no access (HotSpot),
to moderate access (CPython, Squeak) to full access (Bee,
Klein)

in our work, by including the objects of the language, also
includes the VM objects. This term should not be confused
with the term run time, which refers to the time at which
a program is run. Finally, we say environment instead of
language when referring to dynamic aspects of a language:
the language in its execution context, as can be Python with
its command line interface or JavaScript within a browser,
where new code can be added and executed, and objects can
be freely inspected.

Dynamic languages. A wide range of high-level languages
are commonly referred to as dynamic languages. There are
many different aspects of their “dynamicity”. We focus on
three aspects:

40

Garbage Collection and Efficiency in Dynamic Metacircular Runtimes DLS’17, October 24, 2017, Vancouver, Canada

(i) Ability to change arbitrary code at run time, which
enables programmers to run new code without having
to restart the system.

(ii) The language neither allows type annotations or relies
on type inference, e.g., JavaScript, Python or Smalltalk.2

(iii) Use of automatic memory management, which avoids
common resource management bugs.

We use the terms dynamic language and dynamic envi-
ronment to refer to systems with the above three properties,
specifically in the area of OO languages.

Metacircularity. There are various definitions of metacircu-
larity. We use Ungar et al.’s definition [31], and say that a sys-
tem ismetacircular, if it is defined in terms of the constructs it
provides. Based on this definition, Smalltalk’s metamodel is
metacircular, as most of its own concepts (objects, messages,
classes, methods) are defined in terms of themselves.

Self-hosted VMs and metacircular VMs. A programming lan-
guage implementation is self-hosted if its build tool-chain is
written in the same language. Self-hosted implementations
require to be bootstrapped. That is, to provide an early way
of executing the compilation tool-chain, after which the lan-
guage implementation can generate new versions of itself. A
VM can be implemented in the language it implements. Such
a VM is self-hosted if it includes the execution mechanisms
to generate new versions of itself. That VM could also be
metacircular, if defined using its own constructs. In truly
metacircular VMs, programs of the language can access the
running VM components using the same constructs with
which the VM is programmed. Squeak and PyPy are examples
of projects that use a self-hosted but not truly metacircular
VM. Once the code of those VMs is transformed to be exe-
cuted (to C and then native code), the VM model becomes
fixed and mostly inaccessible from programs at run time.

VMs implemented in higher level languages. Figure 1 sketches
runtime systems with varying amounts of reflection capabili-
ties and metacircularity. In (a), objects communicate with the
VM through an exposed interface that gives limited access to
its services. Through this interface the language-level code
can trigger primitives, garbage collection, message lookup or
JIT-compilation. The supported language objects and the VM
model live in different worlds, making it hard to access the
VM model and much more difficult to change it dynamically.
In (b), the language acquires a richer model of meta objects
like classes, methods and messages, gaining the ability of
modifying them at run time. Smalltalk and Self are typical
examples of these kind of runtime. In (c), all VM compo-
nents have been incorporated at language level, and have
become just more runtime library objects. Bee and Klein are
examples of this.

2We refer to these languages as dynamically-typed languages.

language dynamicity

c-gcc

im
p
le

m
e
n
ta

ti
o
n
 d

y
n
a
m

ic
it

y

java-jvm

st-squeak
python-pypy

java-truffle

st-bee,
self-klein,

st-pinocchio

python-cpython,
js-v8

js-tachyon

Figure 2. Language dynamicity vs. VM implementation dy-
namicity

Metacircular runtimes combined with dynamic environments.
In a dynamic language, the VM model can be retrofitted
into the language itself, making the entire runtime system
dynamic. In such a system, the VM gets combined with the
language objects as just more objects. We say that these
systems are completely metacircular, because all of their
concepts are modeled in and accessible by the language. We
call them dynamic metacircular runtimes (DMR), and this is
the focus of our work.

2.2 Philosophy
The main idea driving this research is that nothing that can
be implemented at the high level should stay implemented at
the low level. Concepts that are typically realized as low-level
parts of a system, e.g., primitives, compilers and debuggers,
should be realized in the high level language as the rest of
the system is. Some researchers advocate for high-level low-
level programming, arguing that productivity is improved
while performance impacts can be overcome and reduced to
negligible levels [11].

2.3 Related Work and Background
One of the first self-hosted VMs for an OO language was
Squeak [15]. While its code uses a Smalltalk syntax, it does
not have an object-oriented design and is not dynamic. Its
source code is directly translated to C and then compiled.
However, a simulator helps debugging the VMwith Smalltalk
tools by executing the code as Smalltalk.
There are also a number of self-hosted virtual machines

in Java [2, 3, 34]. As Java programs allow only limited code
modifications at run time, all of these VMs share the same
property: their behavior is mainly defined at compile time,
and it is hard or not possible at all to arbitrarily modify things
like lookup algorithm, GC or JIT compiler at runtime. As a
way to implement support for other languages, Würthinger

41

DLS’17, October 24, 2017, Vancouver, Canada Javier Pimás, Javier Burroni, Jean Baptiste Arnaud, and Stefan Marr

et al. [35] propose to reuse existing VM infrastructure, com-
bining a Java JIT compiler, which is written in Java, and
AST interpreters, also written in Java. They show how sup-
port code for new languages can easily reuse optimization
components of another host VM to be efficient [14, 36].

The PyPy project [27] takes a similar approach, providing
tools to implement languages as interpreters, while reusing
common elements such as a meta-tracing JIT compiler and
the garbage collector. The interpreters are implemented in
a subset of Python called RPython. This makes it possible
to apply type inference to the code of the VM and generate
C sources that can finally be compiled. Again, the kernel of
the VM remains static. Tachyon [7] uses its own IR compiler
while maintaining the separation between the VM and the
language objects.
Klein [31] and Pinocchio [33] are proof-of-concept im-

plementations of DMRs for Self and Smalltalk respectively,
reducing barriers between applications and VMs. Klein al-
lowed VM programming at run time. Figure 2 depicts how
the dynamicity of these implementations and the supported
languages compare to each other. Unfortunately, none of
these projects reached completion, nor did they achieve a
fully working environment. For example, Klein did not reach
the full set of features that the Self VM written in C++ pro-
vided: object modification at run time was not possible in
the debugging environment, garbage collection was missing
and performance was not studied.
Redmond and Cahill [26] and more recently Chari et

al. [4, 5] propose alternative approaches, extending reflec-
tion [29] to VMs through metaobject protocols [18]. Those
approaches can allow the implementation of highly adapt-
able VMs without compromising performance. However,
unlike our solution, while they allow adapting the VM to
unanticipated scenarios, the different capabilities that can
be switched at run time (like adding immutability to objects)
have to be anticipated and coded before the system is started.

Previous Bee iteration. A first iteration of Bee has been
described in [25]; this implementation was a first indication
of the feasibility of our approach but was not mature enough
to validate key aspects of the system: it run orders of magni-
tude slower than the original VM and its garbage collector
was not able to run in the bootstrapped system, but only
attached to the original VM. Debugging of the self-hosted
system had to be done with low-level tools, and no GUI was
available. This is not the case anymore.

3 Obstacles to Dynamic Metacircular
Runtimes

The implementation of a DMR entails different needs com-
pared to other kinds of VMs. The previous iteration of Bee [25]
is the most related and complete work, which showed the
way to both efficiently accessing low-level elements such as

compilers or object headers and cut chicken-or-egg circular-
ities in the system. However, two main problems were left
unsolved then:
(i) Implementing a garbage collector that is able to traverse

not only the application heap but also the runtime heap.
(ii) Matching performance levels of comparable VMs while

being written using dynamic languages.
While solutions to those problems have been developed for

similar projects (cf. section 2.3), it was not shown that they
are applicable to DMRs. In this paper, we demonstrate that by
combining different approaches it is possible to implement a
fully-featured DMR with acceptable levels of performance.
This section details the challenges tackled in our work, that
allow a DMR to support all the features of an OO environ-
ment such as Python, Ruby, Smalltalk, or Self. Solutions to
these problems, both in Bee and in other implementations
are discussed in section 4.

3.1 Garbage Collection
In metacircular environments, entities that represent shape
and behavior of objects are also objects. Classes, metaclasses,
methods, method dictionaries, processes and threads are
objects. In DMRs, the garbage collector model is placed at the
language level. There is no low-level interface to the garbage
collector functionalities, but only a high-level unified model
where everything is an object.

3.1.1 Garbage Collection of Runtime Objects
A first challenge is that a DMR adds runtime entities to the
set of objects of metacircular environments. This includes
allocation spaces, stacks, arrays, memory and even the GC
itself and its objects are represented by regular instances
of classes. Thus, by tracing the root pointers of a program,
the GC will find itself, and all the other objects that are
needed by its own implementation. Examples of these ob-
jects are the GC instance itself, its class, methods, spaces,
and even the stacks. The transitive closure of these objects
is also needed.3 The garbage collector needs to determine
which objects have to be followed and which should not.
Objects created temporarily by the collector should not be
left allocated consuming memory after collection finishes,
and unlike classic VMs, the runtime needs to have its own
objects be collected from time to time.

Squeak and PyPy do not suffer from this problem, as their
code is translated to C. Truffle/Graal does not implement a
GC but relies on the one of Hotspot, which is written at the
lower C++ level. Other Java VMs like Maxine and Jikes do
model VM concepts with objects and implement a GC that
traverses those objects. However, as the VM code cannot be
modified at run time, objects representing parts of the VM

3By transitive closure of a set of objects we mean all objects that are
directly or indirectly reachable from the objects.

42

Garbage Collection and Efficiency in Dynamic Metacircular Runtimes DLS’17, October 24, 2017, Vancouver, Canada

like the GC itself can be fixed in memory and do not require
moving. Tachyon and Klein do not provide a GC.

In section 4.1 we describe how to implement GC in a DMR,
while at the same time allowing all components of the VM
to be freely changed at run time.

3.1.2 Execution Context Unavailability During
Garbage Collection

A second problem arises in DMRs as a consequence of hav-
ing a common paradigm for VM and application-level ob-
jects. Typical garbage collectors, even in self-hosted imple-
mentations like those of Squeak or PyPy, work within an
execution environment that is split from the collected envi-
ronment. Methods and classes of those garbage collectors
cannot be reached through traversing roots of the collected
space. Within the heap, the GC algorithm can freely change
object pointers as needed to adjust references. But the GC of
a DMR, on the other hand, is made of standard objects living
in memory. These objects not only live in the same heap
as application-level objects, but are indistinguishable from
other kinds of objects. For example, application classes sub-
class the very sameObject class from which theGarbageCol-
lector class inherits. Native code is also represented using
simple objects. Unless specially treated, code can be moved
by the GC throughout memory as any other object. This
means that at some point during GC different copies of the
garbage collector code can be alive and reachable.

For the reasons described above, a DMR GC cannot pause
all high-level execution, as its own code is written at high-
level. DMR implementors have to face the problem that com-
mon garbage collection algorithms leave objects in an incon-
sistent state while the garbage collector is running. Object
headers and pointers get mangled to detect live objects and
to rearrange references, which means that at intermediate
stages of collection objects are not able to receive messages.
The garbage collector then needs to either be completely
disconnected in some way from the collected execution en-
vironment, or be altered in a way that its objects are kept
operative during its work. Two specific examples of this prob-
lem are described below: forwarding pointers in Copying
Collectors (CC) and pointer reversal in Mark-and-Compact
(M&C) [16]. Section 4.1 shows two different approaches that
can be used either to solve those problems or to avoid them
at all.

Forwarding Pointers in Copying Collectors. CCs need to mark
reached objects and store a forwarding pointer to the new
copies; this is done by overwriting the original header of
the object with the forwarding pointer [10]. When garbage
collection is finished, as no living object points to the original
object, the value of its header does not matter. However,
during the time where garbage collection is running many
objects might have their header overwritten while there still
were pointers to them. Any message sent to an object with

a dirty header will cause undefined behavior. The virtual
machine could be confused taking a forwarding pointer as
an object type, size, or hash.

Pointer Reversal in Mark-and-Compact. Similarly, pointers
of objects may be mangled with different purposes during
marking phase. Tracing live objects requires the usage of a
stack or queue to determine remaining objects to be scanned.
The pointer reversal technique [28] can be used to eliminate
the need of a special memory zone for the stack, using the
slots of the objects to implement a stack like structure. In
the M&C algorithm, pointer threading [17, 23] is done to
efficiently find all references to each moved object.

3.1.3 Garbage Collection Debugging
As part of a metacircular system, it is desirable that the
garbage collector can be debugged, at least partially, within
the standard environment with standard tools. But this poses
another chicken-and-egg situation: in metacircular environ-
ments, standard tools are implemented within the language,
and require a fully functional user-interface handling events;
but stop-the-world garbage collectors require pausing the
high-level program execution, including the user-interface.
Different solutions to this problem are given in section 4.1.2,
trading off simplicity, dynamism and performance of the GC.

3.2 Performance
Dynamic programming environments usually pay for high-
level facilities with performance. Eliminating the overhead of
features provided by the environment requires implementing
or reusing highly complex compilation toolchains [35]. Even
when running with those toolchains, which are implemented
on top of languages like C or C++, dynamic languages do not
reach the same level of performance of code directly written
in languages like C o C++.

ADMR implementationwill face double performance pres-
sure: it experiences the execution overhead associated with
dynamic languages and it also adds the overhead of the lan-
guage to the system side of the implementation. Systems
like Jikes and Maxine reach high performance levels, but
they are not based on dynamic languages. PyPy/Python and
Cog/Squeak [22] are written in dynamic languages, but re-
stricted to a language subset where types can be inferred
and code can be translated to C. On the other hand, Klein
never reached high performance levels and Tachyon only
showed evidence on an incomplete system.

Without a compilation toolchain that is as complex as the
ones of HotSpot, Jikes, V8, or PyPy, we still expect a DMR
to be as fast as comparable systems. For Bee, comparable
systems are the so-called host VM, a JIT-compiled VM for
a Digitalk Smalltalk derivative, from which Bee inherits its
dialect, and the CogVM, a well established Smalltalk VMwith
JIT compiler for Squeak and Pharo. The host VM is written
in assembly and C, while the CogVM is written in Slang, a

43

DLS’17, October 24, 2017, Vancouver, Canada Javier Pimás, Javier Burroni, Jean Baptiste Arnaud, and Stefan Marr

Kernel Library (bee.exe)

Bee Runtime system

kernel classes

kernel methods

lookup

arena

methods'
native code

GC

library loader

JIT classes JIT methods
methods'

native code

Bytecode to Native Code JIT (JIT.bsl)

Compiler
classes

Compiler
methods

methods'
native code

Source code to Bytecode Compiler (SCompiler.bsl)

HW classes HW methods
methods'

native code

HelloWorld Library (HelloWorld.bsl)

Figure 3. Beemodules. Kernel library containsminimal func-
tionality to support itself and to load other libraries. Loading
of JIT and Bytecode compilers is optional. Except for kernel
and JIT, libraries can be shipped with just source code, with
precompiled bytecodes or with native code.

restricted subset of Smalltalk that is directly compiled to C
code. Section 4.2 describes a set of optimization techniques
that allow our DMR to reach the performance levels of the
original VM and the CogVM.
In typical VMs the optimizations done by JIT compilers

are applied using structures hidden to the application. In
a DMR it is desirable to model optimizations within the
language. This means that an optimized DMR for an OO
language should use normal objects for instances of caches
that improve performance, and that those objects should be
freely accessible for inspection and analysis.

4 The Design of the Bee GC and Its
Optimization Model

In this section we examine how Bee, a live programming
environment, solves the problems identified in section 3.

The Bee runtime is completely written in Smalltalk, using
the standard Smalltalk browsers, inspectors, and debugger.
It is a self-hosted DMR per our definition. It supports GC,
foreign function interface including callbacks, a graphical
user interface, native and green threads4, Smalltalk images,
and support for updating arbitrary code at run time. All
these features, as well as lower-level aspects such as method
dispatch and primitive operations, are realized as Smalltalk
methods. Code in Bee is AOT or JIT compiled from bytecodes
but never interpreted. The Smalltalk stack lives on the native
one, mixing managed object pointers with native return

4Currently Bee allows only one thread to execute at a time.

addresses and stack frame pointers. Its structure, as well as
Bee object format and ABI are detailed in [25, Sect. 3].

Bootstrapping The Bee runtime is bootstrapped either
from itself or by running the Smalltalk image on the host VM
to generate an executable. This process packages together a
Smalltalk kernel consisting mainly of classes and methods.
Methods in this package are compiled and stored with their
associated native code. During the creation of this package,
things that refer to the host VM are removed. Methods that
call privimitives, which refer to state and code of the host
VM like memory spaces, lookup, GC and the library loader
are replaced with Smalltalk-implemented complementary
versions, where all state is stored in normal Smalltalk ob-
jects. The JIT is implemented as a separate Smalltalk library
which can be loaded when needed. A high-level view of the
ecosystem is shown in figure 3.

4.1 Implementation of Garbage Collection
One of the toughest challenges when implementing Bee
has been the garbage collector. As previously explained, the
garbage collector needs to be able to traverse itself, to leave
objects operational while running and to be debuggable with
standard tools.

Two Possible Approaches. We see two possible approaches to
achieve this goal. The first one is to use a standard collector
and disconnect it from the garbage collected space. This
avoids the problem of the GC collecting itself, i.e., traversing
the data structures it uses, and it would avoid the problem
of exposing inconsistent object state. The problem of this
approach is that the GC cannot be debugged itself with the
standard environment’s tools, because once collection is
started, it would freeze the UI. Thus, this approach would
require the use of low-level tools for debugging.

A second approach is to modify existing GC algorithms to
have objects in a consistent state throughout the complete
garbage collection process. This means, it would restrict the
GC design more than the first approach and might have
performance implications, but allows us to use our standard
high-level tools for debugging. In the following sections, we
describe our implementation of both approaches.

4.1.1 A Garbage Collector in a Bottle
Using the first approach we replaced the garbage collectors
of the host VM. The same algorithms were implemented,
a mark-and-compact threading collector for the old space
and a generational scavenging collector [6]. We statically
generate a closure of the GC code and the objects required
for it. This closure is put inside a dynamically-linked library
(DLL) which can be regenerated on-the-fly and replaced as
many times as needed at runtime. The closure is filled with
a copy of all objects related to the garbage collector: classes,
methods native code, etc. This makes the GC runtime inde-
pendent of the original objects. The benefit is that important

44

Garbage Collection and Efficiency in Dynamic Metacircular Runtimes DLS’17, October 24, 2017, Vancouver, Canada

objects such as the Object class can be left inconsistent dur-
ing GC, as the GC library uses its own copy of that same
object. The collector uses a separate space for new objects it
creates, which it discards after collection finishes.
Other GC algorithm variations were implemented after-

wards tuning the internal structures of generational and
mark-and-compact collectors, and even a multi-threaded
variation of the mark-and-compact one was implemented.

For development, we were able to use our standard high-
level tools to analyze and debug the algorithms. For example,
we implemented a set of around one hundred GC tests with
high-level tools, where external spaces with different ob-
jects inside are dynamically generated. GCs can be debugged
as they traverse these spaces, to check which objects are
marked, collected and copied. However, for debugging the
integration as DLL, we had to resort to low-level tools. Thus,
the approach limits the useable tooling and isolates the GC
implementation from the application, which we strive to
avoid in our DMR.

4.1.2 A Collector That Can Traverse Itself
To run the GC in the self-hosted environment with better
debugging tools, we implemented the second approach and
plugged it into the bootstrapped environment. To be able to
have a live environment throughout the process of garbage
collection, for the old space we switched from the mark-
and-compact algorithm with object threading to a standard
copying collector. This has an impact on memory usage, but
the copying collector leaves objects in a operational state
during collection. Specifically, we use an external forwarding
table so that the GC modifies objects only to set the mark bit.
This approach was used also to add generational GC support.

With this approach, it is possible to use the standard tools
even while a GC is active. The main reason is that objects
remain valid during copying, which makes it possible to
open a debugger window and go step-by-step throughout
the process. Using this debugger makes development easier
than using a low-level debugger, as it allowed to understand
the context of execution on the level of the Smalltalk im-
plementation, which includes the ability to inspect object
graphs with normal tools, a feature that is typically sorely
missed when debugging GCs.
However, there remain limitations. During GC, objects

start at eden and from spaces, and survivors are moved to to
and old spaces. In the meantime, copied objects are alive in
both places, until all references to objects in eden/from are
forwarded to their copies. Running arbitrary Smalltalk, e.g.
using the debugger, may mutate objects in eden/from spaces
that have already been copied to their new location. These
changes will be lost when GC ends and might corrupt the
system state. Thus, debugging the GC requires great care.
Currently, we have not extended the tools to be aware of
GC and ensure that both objects are modified. In practice
we found that debugging complex issues over an extended

send site

nil

lookupAndInvoke

#bar

common send

st
ub

message

cache
type

send site

monomorphic dispatch

#bar

common send

st
ub

message

cache
type

Foo / Foo>>#bar

(uninitialized) (monomorphic)

Figure 4. A send site modeling #bar being called on a vari-
able. Initially it is empty so its cache is nil and its stub points
to the lookup routine. When send is executed the send site
is modified by the stub to become a monomorphic send and
save a cache, which is a pair of class and compiled method.

amount of time can lead to inconsistencies in the system,
typically causing the user interface to break. Such issues
can currently only be recovered from by restarting the Bee
runtime.

Experience obtained from this made us implement an ex-
ternal debugger, based on the operating system API, that
let us debug our Smalltalk remotely, and safely navigate
through its memory. This debugger presents both a low and
high-level vision of objects in memory and prohibits their
modification while inspecting them in the debugged envi-
ronment. In practice both debuggers are needed: the typical
Smalltalk one for quickly finding simple bugs, the low-level
one for detecting more subtle ones.

4.2 Modeling Optimizations in DMRs
One goal of DMRs is to represent runtime data structures as
plain objects, where possible. This section discusses our ex-
perience of applying this idea to a set of standard and ad-hoc
optimizations that will let DMRs perform as efficiently as a
classic VM with a baseline JIT compiler. While efficiency can
be further improved through the implementation of more
complex compilers, we focus on the feasibility of approach,
showing that optimizations can be modeled within the lan-
guage, and also that if needed the semantic of the language
can be altered at specific points to make the DMR run faster.

4.2.1 Message Dispatch Model
In order to create a design that models optimizations of
message dispatch, Bee implements objects of type SendSite.
Each message in a compiled method is dispatched through an
indirect call to a send site. A send site points to a code stub to
be executed when activated, the message name, its type and
a cache. This way, it can be configured with different policies
dynamically. Initially it is set to perform a lookup. When
executed, the stub changes itself to behave as amonomorphic
send site, and on failure it will be transformed dynamically
to a polymorphic send site. The structure of SendSite objects
is shown in figure 4. This approach is a realization of classic
polymorphic inline caches [12]. We discuss our experience
with it in section 5.1.1.

45

DLS’17, October 24, 2017, Vancouver, Canada Javier Pimás, Javier Burroni, Jean Baptiste Arnaud, and Stefan Marr

4.2.2 Hand Tuning of Compiler Optimizations
Bee’s compiler supports inlining, does simple optimization
passes, and performs register allocation. It first transforms
code from AST to an SSA-based intermediate representation,
where it then performs standard optimizations such as value
numbering or redundant load and dead-store elimination.
However, Bee does not yet support speculative optimiza-

tions. Instead, methods are manually selected for optimiza-
tion. So far, we focused on performance critical methods that
are typically considered primitives, and would normally be
implemented in C/C++. For this code, our compiler is con-
figured to convert specific dynamic calls to static dispatches,
where it is assumed that method lookup will not fail. Given
a send site, the compiler either configures it to statically in-
voke a method, or either removes it and inlines the method’s
code. For both cases, the compilation environment is setup
with a dictionary which maps message names to compiled
methods.

5 Benefits and Drawbacks of DMRs
In this section, we report on our experience with Bee as a
DMR and the benefits as well as drawbacks we see for such
a system. We discuss a set of proof-of-concept applications
of the concepts and experiments with our implementation.

5.1 Dispatch Analysis and Experimentation
Currently, Bee supports only basic compiler optimizations
and thus, does not yet reach the performance of state-of-the-
art JS Virtual Machines. One reason is that it does not yet do
speculative optimizations. This makes the dispatch overhead
in the system a critical component for overall performance.
Since all code is implemented in Smalltalk, the impact of dis-
patch overhead is exacerbated compared to classic VMs were
part of the implementation is in precompiled C/C++ code.
When analyzing the performance of our system using only
basic global lookup caches (GLC) [8, 32] and monomorphic
inline caches [9], we found that about 85% of run time was
spent in message lookup. This was excessive and our goal
was to understand the reason and to find a solution to this.

As a consequence we explored how to use the DMR to
improve performance and finally implemented the afore-
mentioned polymorphic inline caches (cf. section 4.2.1) and
method-specific optimizations (cf. section 4.2.2).

5.1.1 Polymorphic Inline Caches
As a first experiment, we changed the SendSite implementa-
tion to count the amount of times each message name was
dispatched. The goal was to gain insight into the message
send behavior at send sites to determine the cause of the
high overhead.
After running the benchmarks and then using the stan-

dard object inspectors to examine the data for each SendSite,

we were able to determine that the main problem was an un-
usually high degree of polymorphic send sites in our system.

With the object structure for SendSites already in place, it
was straightforward to add support for polymorphism inline
caches (PICs), too. Now, when a send site in a monomor-
phic state fails the check for the receiver type, it switches
its own stub into polymorphic state and changes its cache
into an array of pairs for receiver type and the looked up
target method. In case the array is filled with entries, the
SendSite will revert to the megamorphic case and always
perform a lookup. This reduced the execution time of our
benchmarks by a factor of 4. However, more importantly,
it did not require any ventures into low-level code or tools.
Instead, the whole analysis and the changes were done with
the standard Smalltalk tooling.

5.1.2 Altering Message-Dispatch Semantics
While PICs improved performance significantly, we further
analyzed how to optimize the system. With the PICs im-
plemented, we wanted to understand what their content is.
We did another experiment to analyze the SendSite caches.
Specifically, we changed polymorphic send sites to regis-
ter that switched to a megamorphic state, storing the con-
tents of their caches in a dynamically growing collection.
This allowed use to analyze in detail why send sites become
megamorphic. The results showed that that methods that
implement basic DMR functionality to replace primitives
have a tendency to be megamorphic and overflow PICs. For
example, consider the access of an object field with the #at:
method.

Object>>#at: i
^self _isBytes
ifTrue: [self basicByteAt: i]
ifFalse: [self basicObjectAt: i]

Being implemented at the root of the class hierarchy, the
receiver of at: is often of various different types. This means,
the SendSite caches for the dispatch of #basicByteAt: and
#basicObjectAt: are going to be megamorphic, likely see-
ing all subclasses of Object, and being orders of magnitude
slower. Lower-level VMs do not suffer from this problem
as the primitives are written in languages that do not do
dynamic dispatch.

We solved the issue by creating another kind of send site,
which completely remove method lookup in specific meth-
ods. Thanks to the design explained in section 4.2.2, it was
possible to make the compiler prefill send site caches with
specific compiled methods for specific methods. These stubs
do not check the class of the receiver but invoke the cached
method directly, effectively making the send static.
As with the previous optimization, analysis, implemen-

tation, and debugging of this performance issue were done

46

Garbage Collection and Efficiency in Dynamic Metacircular Runtimes DLS’17, October 24, 2017, Vancouver, Canada

entirely using the standard tooling without need to revert to
low-level tooling that is foreign to application developers.

5.1.3 Discussion
To conclude, with the DMR approach, we were able to dy-
namically analyze, modify and interact with dispatch mech-
anisms within the environment. In static VMs, the same is
not possible and the caches are neither plain objects that
can be easily queried, inspected, and visualized, nor directly
accessible without special tooling and potentially creating a
custom build of the VM.
Furthermore, the SendSite model has shown to be adapt-

able and since the native code compiler is dynamic and avail-
able at application level, it is possible to create ad-hoc opti-
mizations to the system to obtain better performance. Those
optimizations can also be added by application programmers
without the requirement of upstream support from VM de-
velopers. They can be tested and their performance impact
can be measured while the system is running.

5.2 Memory Usage Analysis
For application and VM development alike, it is sometimes
necessary to determine the cause of unusual memory usage,
that might be caused by inefficient data representations or
memory leaks.
During the development of Bee, we frequently used the

capability to quickly explore the complete heap structure,
including the VM’s data structures. For such use cases it is
beneficial that DMRs pose less barriers to obtain fine-grained
information about the contents of memory and lifetime of
objects than static VMs. The reason is that the latter only
provide interfaces to predefined aspects of the VM. Asking
a question that has not been anticipated by VM designers
can require VM modifications, rebuilding and restarting the
system. In a DMR, VM modifications are no different than
normal code modifications, and do not require rebuilding
nor restarting. Hence, arbitrary questions can be answered
quickly and efficiently, by writing and executing few lines of
code. For example, in Bee, it takes only one method to create
a histogram of the types of allocated objects in memory, and
it does not require any anticipated support from the VM.
Similarly, we can create an object size histogram or map the
objects that use most space.
Thanks to having a unified programming model, results

of different analysis can be connected directly to high-level
tools for better visualization and understanding.

5.3 Ideal Low-Level Laboratory
The ecosystem devised to develop, build and debug Bee led to
a compelling feedback loop in the low-level area. Tools were
built on top of the ones made previously, taking advantage
of the synergy created by using a single programming model.
Compilers, optimizers and disassemblers, being written in
high-level, were combinedwith dynamic tools like inspectors

and visualizers, giving birth to a full range of low-level tools:
a native code debugger for generic executables, which was
extended to become a specialized remote VM debugger for
Bee runtime; a graph visualizer for the optimizing compiler;
and a native code profiler, among others. The remote VM
debugger is not only able to show and modify all the low-
level state of a VM like registers, memory and stack frames,
as in Maxine inspector [21], or Jikes RDB [19], but it is also
capable of showing a high-level view of the objects, and
source code being executed as Smalltalk methods. We also
were able to implement a customized experimental back-in-
time debugger for native code, specially useful for fixing bugs
in the garbage collector. Furthermore, the debugger itself
can be modified while the debugged application is running,
allowing for highly interactive debugging sessions.

5.4 Limits of the Implementation
Our goal is to allow changing all the runtime dynamically.
In this respect, it is important to understand what is possible
and what is not yet possible in our implementation:

Lookup The implementation of lookup can be freely
changed at run time. Besides saving the methods in-
volved, it requires an additional installation step to
plug in the native code and flush the inline caches
where needed. This step is instantaneous.

Methods Native code of methods is generated lazily.
This could mean that changing a kernel method to
replace a previous one leaves the kernel without na-
tive code required to continue executing. To avoid this,
the method installer JIT-compiles methods when it
detects a previous version with native code present.

Object Header Format We chose implementation sim-
plicity over dynamism in the design of the API that of-
fers access to object headers. Unlike stratified metaob-
ject protocol implementations, Bee does not offer any
functionality to change object header format at run
time nor to switch from immediate to boxed integers.

Maturity In its current state, Bee is able to run any code
that was written to run on top of the original VM. This
includes not only small code snippets but things like
the whole IDE (with browsers, inspectors and debug-
gers), and even parts of the simulations implemented
in the products of the company. However, the imple-
mentation is not yet stable, and currently we are at a
first step of making self-hosted Bee be used not as a
production environment but as a development one.

5.5 Applications
The Bee project was started by a software company which
markets a mature and sophisticated simulation environment
for more than two decades. The development team of said
company wanted tighter control of the development stack
to improve the quality of their software. The company’s

47

DLS’17, October 24, 2017, Vancouver, Canada Javier Pimás, Javier Burroni, Jean Baptiste Arnaud, and Stefan Marr

experience shows that on-the-fly changes aid in incremental
improvement of the system.While this may not be a common
perspective, in their Smalltalk system, they continuously
improve kernel classes on a daily basis. They found it so
useful, that they wanted to extend it to the VM itself. From
their point of view, the distinction between application and
system programming can be minimized.
This work can also be beneficial in other areas like re-

search and education. From our perspective, user lack of
knowledge in the area of systems programming is not the
reason they avoid modifying a system. Instead, from our
experience, it is more often the case that the lack of familiar
tools and the inaccessibility of the system’s code results in
users avoiding to modify the system at hand. Within a DMR,
programmers can benefit from a unified abstraction level
and use of the same language for all tasks. Both VM and
application developers are provided a unified model and the
same set of tools of the environment.

5.6 Disadvantages, Drawbacks, and Tradeoffs
While presenting many interesting advantages, there are
also tradeoffs that come with a DMR.

System Instability During Runtime Development Changing
core components of the runtime while it is running can eas-
ily cause the system and the IDE to crash. However, this is
not unlike modifying core classes of classic Smalltalk sys-
tems. For instance, changing Class, Object, or Collection in
a Smalltalk system can lead to crashes and undefined be-
havior, because the expectations of the underlying runtime
system are not met anymore. To aid in this problem dur-
ing the development of the DMR, we expanded our support
for remote debugging, which retrofitted as a benefit for the
whole ecosystem, as it also makes it easier to change core
classes of the Smalltalk system.

Restricted Access to Libraries Despite the benefits of pro-
gramming in a higher-level language withmore flexible tools,
there can appear a subtle problem. When writing a VM in
a language like C++, all C++ libraries are available to use
within the VM code. However, coding kernel features in the
DMR is prone to introduce circular dependencies, and the
developer has to be more careful when writing code. There
is a limited amount of features that can be accessed at some
points. Nonetheless, this has not been a big issue during the
development of the project.

Always Present Native Code In a DMR the code cache can
never be flushed completely. At least the parts of the ker-
nel that are in use must always be present. This can make
some system components more difficult to implement than
in traditional systems. For example, the garbage collector
cannot just throw away the native code cache [9] away, it
has to be smart enough to traverse native code and update all
references in it. The same happens when updating a method

in a class, it requires selectively flushing inline caches of all
methods that use the selector of that method, instead of just
throwing all code cache away.

6 Quantitative Evaluation
To provide an impression of quantitative aspects of Bee, we
briefly discuss performance as well as the size of the system.

6.1 Performance Evaluation
The goal of this evaluation is to show that Bee, as a DMR,
can reach the performance of the original non-DMR imple-
mentation. Since the host VM is not generally available, we
also include the CogVM running Pharo 5 as an open source
VM and Smalltalk platform. For Pharo, we include results for
the VM when using a JIT compiler. We also include results
for V8 JavaScript engine as in Node.js v8.1.4. All Smalltalk
implementations are 32-bit while V8 is 64 bits. The bench-
marks were run on a machine with a 2.8Ghz 4-core Core
i7 7700HQ with hyperthreading and 16GB of memory. The
operating system is a 64-bit Ubuntu 17.04. Measures were
taken collecting 50 iterations for each benchmark.
For the performance comparison, we consider peak per-

formance only and discount start-up, warm-up, and JIT-
compilation times. When running on the host VM, all meth-
ods are lazily nativized before execution. To reduce JIT-
compilation measurement noise during benchmarking, we
run a warm-up phase of one iteration before timing for the
host VM and Pharo. In Bee, the benchmarks are AOT com-
piled and run without even loading the JIT-compiler.
The benchmarks are run with an initial heap size of 64

MB, to minimize noise introduced by the GC. The results
are normalized to Pharo to use it as the baseline for the
performance comparison.We report averages and confidence
intervals with α = 95%.
To measure performance, we use the Are We Fast Yet

benchmarks ranging from micro to macrobenchmarks [20].
They are designed to compare performance across different
language implementations and thus were easy to adapt to
Bee’s Smalltalk dialect. DeltaBlue and Richards are classic
benchmarks evaluating the performance of object-oriented
applications. Havlak is an optimization algorithm for a com-
piler but is representative for many application-level opti-
mization problems, too. And the Json benchmark parses a
larger JSON document, which is relevant for the performance
of many REST services used in todays web applications or
micro services. The rest is a collection of numerical and OO
benchmarks stressing particular aspects of the implementa-
tion.

Figure 5 shows the results. For the macrobenchmarks, Bee
DMR consistently surpasses the performance of the host VM
and is close to the one of Pharo 5, matching it in Richards
and Havlak. The results in Json are expected as Bee has not
been optimized for string operations yet. For example, string

48

Garbage Collection and Efficiency in Dynamic Metacircular Runtimes DLS’17, October 24, 2017, Vancouver, Canada

Richards DeltaBlue Havlak Json
0

0,5
1

1,5
2

2,5
3

3,5

HostVM Bee Pharo JIT V8

List Mandelbrot NBody Permute Queens Sieve Storage Towers
0

1

2

3

4

5

6 7.6 6.2

Figure 5. Normalized high- and medium-level benchmarks
execution times, relative to Pharo 5 (lower is better).

copying is done byte-by-byte, checking bounds at each char-
acter. Results of the majority of microbenchmarks follow the
same trend than macrobenchmarks, with the exception of
cases that stress areas that have not been optimized yet in
Bee: object allocation, immediate floats and the GC. Specif-
ically, Mandelbrot, NBody and Storage stress allocation in
Bee. Mandelbrot and NBody have higher allocation rates
on Bee than in other systems, since Bee uses a boxed rep-
resentation for double values. Regarding to V8, a VM that
implements an adaptive compiler

Overall results look promising, specially considering that
there still remain many well known optimizations that can
be implemented in the near future. Particularly relevant shall
be those related to dynamic compilation such as adaptive
recompilation [13], escape analysis [24, 30], and also others
related to compilers in general, like peephole optimization
or loop invariant code motion to mention a few.

6.2 Implementation Size
To evaluate the size of our runtime implementation we report
metrics for its code base. The Bee kernel runtime is small:
4122 lines of code, within 962 methods that are added to
the already existing Bee kernel library, which is used when
running on top of the host VM and consists of 5483 meth-
ods and 20774 lines of code. Those lines added include the
implementation of lookup, primitives, and GC. 56% of those
methods are one liners. Only 72 methods take more than
10 lines, with a maximum size of 31 lines. The JIT compiler
adds 14099 lines of code, distributed in 3105 methods.

7 Conclusions and Future Work
In this paper, we report on our experience implementing a dy-
namic metacircular runtime (DMR).We detail Bee, a dynamic
Smalltalk runtime completely implemented in Smalltalk. The
focus is on identifying the problems that need to be solved
when building a DMR, as well as discussing our solution ap-
proaches and their benefits as well as drawbacks. We focused
on garbage collection support and optimizations. We detail
the tradeoffs between a GC that is disconnected from the
runtime system, and one that is completely integrated and
allows us to utilize the standard Smalltalk tooling for imple-
mentation, testing, and debugging. We discuss how standard
optimizations can be applied to a DMR by detailing how PICs
can be built with standard objects, which consequently can
be analyzed like normal application code. Finally, we have
demonstrated based on benchmarks that a DMR can be as
fast as other widely used static VMs for Smalltalk.

Overall, we believe this experience report shows that it is
feasible to build completely dynamic VMs, which avoid clas-
sic static VM components and insteadmake the VMpart of an
application, which lowers the barrier to VM understanding,
development and evolution. We hope that this approach will
lead to more productive VM development in the future and
allow for application-specific customizations as it is already
the case for common standard libraries for a wide range of
dynamic languages.

Future Work In future work, it remains to be explored
what other new functionalities can be implemented by tak-
ing advantage of the dynamicity and standard tooling for VM
development. It also remains to be verified if this methodol-
ogy can be applied to other dynamic languages like Python,
Ruby or JavaScript. From the description of the problems
presented throughout this paper, we strongly believe the im-
plementation of runtimes similar to Bee in those languages
is feasible.
While we were able to reach the performance of VMs

with baseline compilers, more performance work remains to
be done. One important question is how the complexity of
adaptive compilation affects the maintainability of DMRs.

Finally, we think that there is space for research on imple-
menting new languages inside the environment. This could
include low-level language extensions, support for different
hardware architectures such as GPGPUs, as well as higher-
level abstractions for distributed computing.

Acknowledgments
The authors want to thank Gerardo Richarte, Valeria Murgia,
Leandro Caniglia, Jan Vrany and the development team of
Palantir Solutions for providing valuable ideas, discussions
and reviews, and being in charge of the development and
maintenance of all Bee libraries. This work was funded by
Palantir Solutions. Stefan Marr was funded by a grant of the
Austrian Science Fund (FWF), project number I2491-N31.

49

DLS’17, October 24, 2017, Vancouver, Canada Javier Pimás, Javier Burroni, Jean Baptiste Arnaud, and Stefan Marr

References
[1] B. Alpern, C. R. Attanasio, J.J. Barton, M. G. Burke, P. Cheng, J.-D.

Choi, A. Cocchi, S.J. Fink, D. Grove, M. Hind, S. F. Hummel, D. Lieber,
V. Litvinov, M. F. Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano,
J.C. Shepherd, S. E. Smith, V.C. Sreedhar, H. Srinivasan, and J. Whaley.
2000. The Jalapeño virtual machine. IBM Systems Journal 39, 1 (2000),
211–238.

[2] B. Alpern, S. Augart, S.M. Blackburn, M. Butrico, A. Cocchi, P. Cheng,
J. Dolby, S. Fink, D. Grove, M. Hind, K.S. McKinley, M. Mergen, J. E B
Moss, T. Ngo, V. Sarkar, and M. Trapp. 2005. The Jikes Research Virtual
Machine project: Building an open-source research community. IBM
Systems Journal 44, 2 (2005), 399–417.

[3] Stephen M Blackburn, Sergey I Salishev, Mikhail Danilov, Oleg A
Mokhovikov, Anton A Nashatyrev, Peter A Novodvorsky, Vadim I
Bogdanov, Xiao Feng Li, and Dennis Ushakov. 2007. The Moxie JVM
experience. cluster computing (2007).

[4] Guido Chari, Diego Garbervetsky, and Stefan Marr. 2016. Building Effi-
cient and Highly Run-time Adaptable Virtual Machines. In Proceedings
of the 12th Symposium on Dynamic Languages (DLS’16). ACM, 60–71.

[5] Guido Chari, Diego Garbervetsky, Stefan Marr, and Stéphane Ducasse.
2015. Towards fully reflective environments. In 2015 ACM Interna-
tional Symposium on New Ideas, New Paradigms, and Reflections on
Programming and Software (Onward!). ACM, 240–253.

[6] Chris J Cheney. 1970. A nonrecursive list compacting algorithm. Com-
mun. ACM 13, 11 (1970), 677–678.

[7] Maxime Chevalier-Boisvert, Erick Lavoie, Marc Feeley, and Bruno Du-
four. 2011. Bootstrapping a Self-hosted Research Virtual Machine for
JavaScript: An Experience Report. In Proceedings of the 7th Symposium
on Dynamic Languages (DLS ’11). ACM, 61–72.

[8] Thomas J Conroy and Eduardo Pelegri-Llopart. 1983. An assessment
of method-lookup caches for Smalltalk-80 implementations. Kra83
(1983).

[9] L. Peter Deutsch and Allan M. Schiffman. 1984. Efficient Implemen-
tation of the Smalltalk-80 System. In Proceedings of the 11th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages
(POPL ’84). ACM, 297–302.

[10] Robert R Fenichel and Jerome C Yochelson. 1969. A LISP garbage-
collector for virtual-memory computer systems. Commun. ACM 12,
11 (1969), 611–612.

[11] Daniel Frampton, Stephen M Blackburn, Perry Cheng, Robin J Garner,
David Grove, J Eliot B Moss, and Sergey I Salishev. 2009. Demystifying
magic: high-level low-level programming. In Proceedings of the 2009
ACM SIGPLAN/SIGOPS international conference on Virtual execution
environments. ACM, 81–90.

[12] Urs Hölzle, Craig Chambers, and David Ungar. 1991. Optimizing
Dynamically-Typed Object-Oriented Languages With Polymorphic
Inline Caches. In Proceedings of the European Conference on Object-
Oriented Programming (ECOOP ’91). Springer-Verlag, 21–38. http:
//dl.acm.org/citation.cfm?id=646149.679193

[13] UrsHölzle andDavid Ungar. 1994. OptimizingDynamically-dispatched
Calls with Run-time Type Feedback. In Proceedings of the ACM SIG-
PLAN 1994 Conference on Programming Language Design and Imple-
mentation (PLDI ’94). ACM, 326–336.

[14] Christian Humer, Christian Wimmer, Christian Wirth, Andreas Wöß,
and Thomas Würthinger. 2015. A domain-specific language for build-
ing self-optimizing AST interpreters. ACM SIGPLAN Notices 50, 3
(2015), 123–132.

[15] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay.
1997. Back to the Future: The Story of Squeak, a Practical Smalltalk
Written in Itself. In Proceedings of the 12th ACM SIGPLAN Conference
on Object-oriented Programming, Systems, Languages, and Applications
(OOPSLA ’97). ACM, 318–326.

[16] Richard Jones, Antony Hosking, and Eliot Moss. 2011. The garbage col-
lection handbook: the art of automatic memory management. Chapman

& Hall/CRC.
[17] HBM Jonkers. 1979. A fast garbage compaction algorithm. Inform.

Process. Lett. 9, 1 (1979), 26–30.
[18] Gregor Kiczales, Jim Des Rivieres, and Daniel Gureasko Bobrow. 1991.

The art of the metaobject protocol. MIT.
[19] Dmitri Makarov and Matthias Hauswirth. 2013. Jikes RDB: a debugger

for the Jikes RVM. In Proceedings of the 2013 International Conference
on Principles and Practices of Programming on the Java Platform: Virtual
Machines, Languages, and Tools (PPPJ ’13). ACM, 169–172.

[20] Stefan Marr, Benoit Daloze, and Hanspeter Mössenböck. 2016. Cross-
Language Compiler Benchmarking—AreWe Fast Yet?. In Proceedings of
the 12th Symposium on Dynamic Languages (DLS’16). ACM, 120–131.

[21] Bernd Mathiske. 2008. The Maxine Virtual Machine and Inspector. In
Companion to the 23rd ACM SIGPLAN Conference on Object-oriented
Programming Systems Languages and Applications (OOPSLA Compan-
ion ’08). ACM, 739–740.

[22] Eliot Miranda. 2011. The cog smalltalk virtual machine. In VMIL’11:
Proceedings of the 5th workshop on Virtual machines and intermediate
languages for emerging modularization mechanisms.

[23] F Lockwood Morris. 1978. A time-and space-efficient garbage com-
paction algorithm. Commun. ACM 21, 8 (1978), 662–665.

[24] Young Gil Park and Benjamin Goldberg. 1992. Escape analysis on lists.
In ACM SIGPLAN Notices, Vol. 27. ACM, 116–127.

[25] Javier Pimás, Javier Burroni, and Gerardo Richarte. 2014. Design and
implementation of Bee Smalltalk runtime. (2014).

[26] Barry Redmond and Vinny Cahill. 2000. Iguana/J: Towards a dynamic
and efficient reflective architecture for Java. In ECOOP 2000 Workshop
on Reflection and Metalevel Architectures.

[27] Armin Rigo and Samuele Pedroni. 2006. PyPy’s Approach to Vir-
tual Machine Construction. In Companion to the 21st ACM SIGPLAN
Symposium on Object-oriented Programming Systems, Languages, and
Applications (OOPSLA ’06). ACM, 944–953.

[28] Herbert Schorr and William M Waite. 1967. An efficient machine-
independent procedure for garbage collection in various list structures.
Commun. ACM 10, 8 (1967), 501–506.

[29] Brian Cantwell Smith. 1984. Reflection and semantics in Lisp. In
Proceedings of the 11th ACM SIGACT-SIGPLAN symposium on Principles
of programming languages. ACM, 23–35.

[30] Lukas Stadler, Thomas Würthinger, and Hanspeter Mössenböck. 2014.
Partial escape analysis and scalar replacement for Java. In Proceedings
of Annual IEEE/ACM International Symposium on Code Generation and
Optimization. ACM, 165.

[31] David Ungar, Adam Spitz, and Alex Ausch. 2005. Constructing a
metacircular Virtual machine in an exploratory programming envi-
ronment. In OOPSLA ’05: Companion to the 20th annual ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and
applications. ACM, 11–20.

[32] David M Ungar. 1983. Berkeley Smalltalk: Who knows where the time
goes? Smalltalk-80: bits of history, words of advice (1983), 189–206.

[33] Toon Verwaest, Camillo Bruni, David Gurtner, Adrian Lienhard, and
Oscar Niestrasz. 2010. Pinocchio: bringing reflection to life with first-
class interpreters. ACM Sigplan Notices 45, 10 (2010), 774–789.

[34] Christian Wimmer, Michael Haupt, Michael L. Van De Vanter, Mick
Jordan, Laurent Daynès, and Douglas Simon. 2013. Maxine: An Ap-
proachable Virtual Machine for, and in, Java. ACM Trans. Archit. Code
Optim. 9, 4, Article 30 (Jan. 2013), 24 pages.

[35] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler,
Gilles Duboscq, Christian Humer, Gregor Richards, Doug Simon, and
Mario Wolczko. 2013. One VM to rule them all. In Proceedings of the
2013 ACM international symposium on New ideas, new paradigms, and
reflections on programming & software. ACM, 187–204.

[36] Thomas Würthinger, Andreas Wöß, Lukas Stadler, Gilles Duboscq,
Doug Simon, and Christian Wimmer. 2012. Self-optimizing AST inter-
preters. In ACM SIGPLAN Notices, Vol. 48. ACM, 73–82.

50

http://dl.acm.org/citation.cfm?id=646149.679193
http://dl.acm.org/citation.cfm?id=646149.679193

	Abstract
	1 Introduction
	2 Dynamic Metacircular Environments
	2.1 Terminology and Main Concepts
	2.2 Philosophy
	2.3 Related Work and Background

	3 Obstacles to Dynamic Metacircular Runtimes
	3.1 Garbage Collection
	3.2 Performance

	4 The Design of the Bee GC and Its Optimization Model
	4.1 Implementation of Garbage Collection
	4.2 Modeling Optimizations in DMRs

	5 Benefits and Drawbacks of DMRs
	5.1 Dispatch Analysis and Experimentation
	5.2 Memory Usage Analysis
	5.3 Ideal Low-Level Laboratory
	5.4 Limits of the Implementation
	5.5 Applications
	5.6 Disadvantages, Drawbacks, and Tradeoffs

	6 Quantitative Evaluation
	6.1 Performance Evaluation
	6.2 Implementation Size

	7 Conclusions and Future Work
	References

