Sample Average Approximation for Black-Box VI

Javier Burroni, Justin Domke, Daniel Sheldon

1. Setup

Focus: Variational inference for statistical models:

- hundreds of variables
- without data-subsampling

ELBO maximization:

• with reparameterizable distribution q_{θ} via $z_{\theta}(\cdot)$ and q_{base}

$$\max_{\theta \in \Theta} \mathscr{L}(\theta) = \max_{\theta \in \Theta} \mathbb{E}_{\epsilon \sim q_{\theta}} \left[\ln \frac{p(z_{\theta}(\epsilon), x)}{q_{\theta}(\epsilon)} \right]$$

Usually solved with SGD:

- Hard to tune hyper-parameters
- Results highly dependent on choices

3. SAA

Take $\epsilon_1, ..., \epsilon_n \sim q_{\text{base}}$

Create deterministic optimization problem:

Solve
$$\max_{\theta \in \Theta} \widehat{\mathcal{Z}}_{\epsilon}(\theta) = \max_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} \left[\ln \frac{p(z_{\theta}(\epsilon_i), x)}{q_{\theta}(z_{\theta}(\epsilon_i))} \right]$$

Optimize with:

L-BFGS for search direction and line search for step-size

2. Contribution

We introduced SAA for VI:

- An alternative stochastic-optimization for BBVI
- Enhances both speed and quality of approximation

4. Sequence of SAA

Use sequence of sizes $n_1 < n_2 < \dots$ to reduce Monte Carlo error

5. New convergence criterion

Compare distributions of log-weights.

Stop when training and testing cannot be distinguished

Training and testing log-weights distribution.

By increasing the sample size used for training we achieve a better approximation.

6. Experimental results

Stan models: ELBO comparison after training with dense Gaussian approximation. For each model, ELBOs are shifted so the best method has value 100.

SAA for VI vs Adam:

Left: electric model (D=100) Right: Stochastic volatility ($D\approx17k$)

