
Using Neural Networks for remote OS Identification

Using Neural Networks
for remote OS Identification

Javier Burroni - Carlos Sarraute
Core Security Technologies

PacSec/core05 conference

Using Neural Networks for remote OS Identification

1. Introduction

2. DCE-RPC Endpoint mapper

3. OS Detection based on Nmap signatures

4. Dimension reduction and training

OUTLINE

Using Neural Networks for remote OS Identification

1. Introduction
2. DCE-RPC Endpoint mapper

3. OS Detection based on Nmap signatures

4. Dimension reduction and training

Using Neural Networks for remote OS Identification

OS Identification

 OS Identification = OS Detection = OS Fingerprinting

 Crucial step of the penetration testing process
– actively send test packets and study host response

 First generation: analysis of differences between TCP/IP stack
implementations

 Next generation: analysis of application layer data (DCE RPC endpoints)
– to refine detection of Windows versions / editions / service packs

Using Neural Networks for remote OS Identification

Limitations of OS Fingerprinting tools

 Some variation of “best fit” algorithm is used to analyze the information

– will not work in non standard situations
– inability to extract key elements

 Our proposal:

– focus on the technique used to analyze the data
– we have developed tools using neural networks
– successfully integrated into comercial software

Using Neural Networks for remote OS Identification

1. Introduction

2. DCE-RPC Endpoint mapper

3. OS Detection based on Nmap signatures

4. Dimension reduction and training

Using Neural Networks for remote OS Identification

Windows DCE-RPC service

 By sending an RPC query to a host’s port 135
you can determine which services or programs are registered

 Response includes:
– UUID = universal unique identifier for each program
– Annotated name
– Protocol that each program uses
– Network address that the program is bound to
– Program’s endpoint

Using Neural Networks for remote OS Identification

Endpoints for a Windows 2000 Professional edition service pack 0

 uuid="5A7B91F8-FF00-11D0-A9B2-00C04FB6E6FC"
annotation="Messenger Service"
– protocol="ncalrpc" endpoint="ntsvcs" id="msgsvc.1"
– protocol="ncacn_np" endpoint="\PIPE\ntsvcs" id="msgsvc.2"
– protocol="ncacn_np" endpoint="\PIPE\scerpc" id="msgsvc.3"
– protocol="ncadg_ip_udp" id="msgsvc.4"

 uuid="1FF70682-0A51-30E8-076D-740BE8CEE98B"
– protocol="ncalrpc" endpoint="LRPC" id="mstask.1"
– protocol="ncacn_ip_tcp" id="mstask.2"

 uuid="378E52B0-C0A9-11CF-822D-00AA0051E40F"
– protocol="ncalrpc" endpoint="LRPC" id="mstask.3"
– protocol="ncacn_ip_tcp" id="mstask.4"

Using Neural Networks for remote OS Identification

Neural networks come into play…

 It’s possible to distinguish Windows versions, editions and service packs
based on the combination of endpoints provided by DCE-RPC service

 Idea: model the function which maps endpoints combinations to OS
versions with a multilayer perceptron neural network

 Several questions arise:
– what kind of neural network do we use?
– how are the neurons organized?
– how do we map endpoints combinations to neural network inputs?
– how do we train the network?

Using Neural Networks for remote OS Identification

Multilayer Perceptron Neural Network

413 neurons

42 neurons

25 neurons

Using Neural Networks for remote OS Identification

3 layers topology

 Input layer : 413 neurons
– one neuron for each UUID
– one neuron for each endpoint corresponding to the UUID
– handle with flexibility the appearance of an unknown endpoint

 Hidden neuron layer : 42 neurons
– each neuron represents combinations of inputs

 Output layer : 25 neurons
– one neuron for each Windows version and edition

» Windows 2000 professional edition
– one neuron for each Windows version and service pack

» Windows 2000 service pack 2
– errors in one dimension do not affect the other

Using Neural Networks for remote OS Identification

What is a perceptron?

 x1 … xn are the inputs of the neuron
 wi,j,0 … wi,j,n are the weights
 f is a non linear activation function

– we use hyperbolic tangent tanh
 vi,j is the output of the neuron

Training of the network = finding the weights for each neuron

Using Neural Networks for remote OS Identification

Back propagation

 Training by back-propagation:
 for the output layer

– given an expected output y1 … ym

– calculate an estimation of the error

 this is propagated to the previous layers as:

Using Neural Networks for remote OS Identification

New weights

 The new weights, at time t+1, are:

 where:

learning rate momentum

Using Neural Networks for remote OS Identification

Supervised training

 We have a dataset with inputs and expected outputs

 One generation: recalculate weights for each input / output pair

 Complete training = 10350 generations
– it takes 14 hours to train network (python code)

 For each generation of the training process, inputs are reordered randomly
(so the order does not affect training)

Using Neural Networks for remote OS Identification

Sample result

Neural Network Output (close to 1 is better):
Windows NT4: 4.87480503763e-005
Editions:

Enterprise Server: 0.00972694324639
Server: -0.00963500026763

Service Packs:
6: 0.00559659167371
6a: -0.00846224120952

Windows 2000: 0.996048928128
Editions:

Server: 0.977780526016
Professional: 0.00868998746624
Advanced Server: -0.00564873813703

Service Packs:
4: -0.00505441088081
2: -0.00285674134367
3: -0.0093665583402
0: -0.00320117552666
1: 0.921351036343

Using Neural Networks for remote OS Identification

Sample result (cont.)

Windows 2003: 0.00302898647853
Editions:

Web Edition: 0.00128127138728
Enterprise Edition: 0.00771786077082
Standard Edition: -0.0077145024893

Service Packs:
0: 0.000853988551952

Windows XP: 0.00605168045887
Editions:

Professional: 0.00115635710749
Home: 0.000408057333416

Service Packs:
2: -0.00160404945542
0: 0.00216065240615
1: 0.000759109188052

Setting OS to Windows 2000 Server sp1
Setting architecture: i386

Using Neural Networks for remote OS Identification

Result comparison

 Results of our laboratory:

Old DCE-RPC module DCE-RPC with neural
networks

Perfect matches 6 7

Partial matches 8 14

Mismatches 7 0

No match 2 2

Using Neural Networks for remote OS Identification

1. Introduction

2. DCE-RPC Endpoint mapper

3. OS Detection based on
Nmap signatures

4. Dimension reduction and training

Using Neural Networks for remote OS Identification

Nmap tests

 Nmap is a network exploration tool and security scanner
 includes OS detection based on the response of a host to 9 tests

Test send packet to port with flags enabled
T1 TCP open TCP SYN, ECN-Echo
T2 TCP open TCP no flags
T3 TCP open TCP URG, PSH, SYN, FIN
T4 TCP open TCP ACK
T5 TCP closed TCP SYN
T6 TCP closed TCP ACK
T7 TCP closed TCP URG, PSH, FIN
PU UDP closed UDP
TSeq TCP * 6 open TCP SYN

Using Neural Networks for remote OS Identification

Nmap signature database

 Our method is based on the Nmap signature database
 A signature is a set of rules describing how a specific version / edition of an

OS responds to the tests. Example:

Linux 2.6.0-test5 x86
Fingerprint Linux 2.6.0-test5 x86
Class Linux | Linux | 2.6.X | general purpose
TSeq(Class=RI%gcd=<6%SI=<2D3CFA0&>73C6B%IPID=Z%TS=1000HZ)
T1(DF=Y%W=16A0%ACK=S++%Flags=AS%Ops=MNNTNW)
T2(Resp=Y%DF=Y%W=0%ACK=S%Flags=AR%Ops=)
T3(Resp=Y%DF=Y%W=16A0%ACK=S++%Flags=AS%Ops=MNNTNW)
T4(DF=Y%W=0%ACK=O%Flags=R%Ops=)
T5(DF=Y%W=0%ACK=S++%Flags=AR%Ops=)
T6(DF=Y%W=0%ACK=O%Flags=R%Ops=)
T7(DF=Y%W=0%ACK=S++%Flags=AR%Ops=)
PU(DF=N%TOS=C0%IPLEN=164%RIPTL=148%RID=E%RIPCK=E%UCK=E%UL

EN=134%DAT=E)

Using Neural Networks for remote OS Identification

Wealth and weakness of Nmap

 Nmap database contains 1464 signatures

 Nmap works by comparing a host response to each signature in the
database:
– a score is assigned to each signature
– score = number of matching rules / number of considered rules
– “best fit” based on Hamming distance

 Problem: improbable operating systems
– generate less responses to the tests
– and get a better score!
– e.g. a Windows 2000 version detected as Atari 2600 or HPUX …

Using Neural Networks for remote OS Identification

Hierarchical Network Structure

 Analyze the responses with a neural network based function
 OS detection is a step of the penetration test process

– we only want to detect Windows, Linux, Solaris, OpenBSD, FreeBSD,
NetBSD

relevant

not relevant

Windows

Linux

Solaris

OpenBSD

FreeBSD

NetBSD

DCE-RPC endpoint

kernel version

version

version

version

version

Using Neural Networks for remote OS Identification

So we have 5 neural networks…

 One neural network to decide if the OS is relevant / not relevant

 One neural network to decide the OS family:
– Windows, Linux, Solaris, OpenBSD, FreeBSD, NetBSD

 One neural network to decide Linux version
 One neural network to decide Solaris version
 One neural network to decide OpenBSD version

 Each neural network requires special topology design and training!

Using Neural Networks for remote OS Identification

Neural Network inputs

 Assign a set of inputs neurons for each test
 Details for tests T1 … T7:

 one neuron for ACK flag
– one neuron for each response: S, S++, O

 one neuron for DF flag
– one neuron for response: yes/no

 one neuron for Flags field
– one neuron for each flag: ECE, URG, ACK, PSH, RST, SYN, FIN

 10 groups of 6 neurons for Options field
– we activate one neuron in each group according to the option

EOL, MAXSEG, NOP, TIMESTAMP, WINDOW, ECHOED
 one neuron for W field (window size)

Using Neural Networks for remote OS Identification

Example of neural network inputs

 For flags or options: input is 1 or -1 (present or absent)
 Others have numerical input

– the W field (window size)
– the GCD (greatest common divisor of initial sequence numbers)

 Example of Linux 2.6.0 response:
T3(Resp=Y%DF=Y%W=16A0%ACK=S++%Flags=AS%Ops=MNNTNW)

 maps to:

ACK S S++ O DF Yes Flags E U A P R S F …

1 -1 1 -1 1 1 1 -1 -1 1 -1 -1 1 -1 …

Using Neural Networks for remote OS Identification

Neural network topogy

 Input layer of 560 dimensions
– lots of redundancy
– gives flexibility when faced to unknown responses
– but raises performance issues!
– dimension reduction is necessary…

 4 layers neural network, for example the first neural network (relevant / not
relevant filter) has:

input layer : 204 neurons

hidden layer1 : 96 neurons
hidden layer2 : 20 neurons

output layer : 1 neuron

Using Neural Networks for remote OS Identification

Dataset generation

 To train the neural network we need
– inputs (host responses)
– with corresponding outputs (host OS)

 Signature database contains 1464 rules
– a population of 15000 machines needed to train the network!
– we don’t have access to such population…
– scanning the Internet is not an option!

 Generate inputs by Monte Carlo simulation
– for each rule, generate inputs matching that rule
– number of inputs depends on empirical distribution of OS

» based on statiscal surveys
– when the rule specifies options or range of values

» chose a value following uniform distribution

Using Neural Networks for remote OS Identification

1. Introduction

2. DCE-RPC Endpoint mapper

3. OS Detection based on Nmap signatures

4. Dimension reduction and training

Using Neural Networks for remote OS Identification

Inputs as random variables

 We have been generous with the input
– 560 dimensions, with redundancy
– inputs dataset is very big
– the training convergence is slow…

 Consider each input dimension as a random variable Xi

– input dimensions have different orders of magnitude
» flags take 1/-1 values
» the ISN (initial sequence number) is an integer

– normalize the random variables:

expected value

standard deviation

Using Neural Networks for remote OS Identification

 We compute the correlation matrix R:

 After normalization this is simply:

 The correlation is a dimensionless measure of statistical dependence
– closer to 1 or -1 indicates higher dependence
– linear dependent columns of R indicate dependent variables
– we keep one and eliminate the others
– constants have zero variance and are also eliminated

Correlation matrix

expected value

Using Neural Networks for remote OS Identification

Principal Component Analysis (PCA)

 Further reduction involves Principal Component Analysis (PCA)

 Idea: compute a new basis (coordinates system) of the input space
– the greatest variance of any projection of the dataset in a subspace of

k dimensions
– comes by projecting to the first k basis vectors

 PCA algorithm:
– compute eigenvectors and eigenvalues of R
– sort by decreasing eigenvalue
– keep first k vectors to project the data
– parameter k chosen to keep 98% of total variance

Using Neural Networks for remote OS Identification

Resulting neural network topology

 After performing PCA we obtain the following neural network topologies
(original input size was 560 in all cases)

Analysis Input layer Hidden layer 1 Hidden layer 2 Output layer

Relevance 204 96 20 1

Operating
System

145 66 20 6

Linux 100 41 18 8

Solaris 55 26 7 5

OpenBSD 34 23 4 3

Using Neural Networks for remote OS Identification

Adaptive learning rate

 Strategy to speed up training convergence

 Calculate the cuadratic error estimation
(yi are the expected outputs, vi are the actual outputs):

 Between generations (after processing all dataset input/output pairs)
– if error is smaller then increase learning rate
– if error is bigger then decrease learning rate

 Idea: move faster if we are in the correct direction

Using Neural Networks for remote OS Identification

Error evolution (fixed learning rate)

Using Neural Networks for remote OS Identification

Error evolution (adaptive learning rate)

Using Neural Networks for remote OS Identification

Subset training

 Another strategy to speed up training convergence

 Train the network with several smaller datasets (subsets)

 To estimate the error, we calculate a goodness of fit G
– if the output is 0/1:

G = 1 – (Pr[false positive] + Pr[false negative])
– other outputs:

G = 1 – number of errors / number of outputs

 Adaptive learning rate:
– if goodness of fit G is higher, then increase the initial learning rate

Using Neural Networks for remote OS Identification

Sample result (host running Solaris 8)

 Relevant / not relevant analysis
0.99999999999999789 relevant

 Operating System analysis
-0.99999999999999434 Linux
0.99999999921394744 Solaris
-0.99999999999998057 OpenBSD
-0.99999964651426454 FreeBSD
-1.0000000000000000 NetBSD
-1.0000000000000000 Windows

 Solaris version analysis
0.98172780325074482 Solaris 8
-0.99281382458335776 Solaris 9
-0.99357586906143880 Solaris 7
-0.99988378968003799 Solaris 2.X
-0.99999999977837983 Solaris 2.5.X

Using Neural Networks for remote OS Identification

Ideas for future work 1

 Analyze the key elements of the Nmap tests
– given by the analysis of the final weights
– given by Correlation matrix reduction
– given by Principal Component Analysis

 Optimize Nmap to generate less traffic

 Add noise and firewall filtering
– detect firewall presence
– identify different firewalls
– make more robust tests

Using Neural Networks for remote OS Identification

Ideas for future work 2

 This analysis could be applied to other detection methods:

 xprobe2 – Ofir Arkin, Fyodor & Meder Kydyraliev
– detection by ICMP, SMB, SNMP

 p0f (Passive OS Identification) – Michal Zalewski

 OS detect by SUN RPC / Portmapper
– Sun / Linux / other System V versions

 MUA (Outlook / Thunderbird / etc) detection using Mail Headers

Using Neural Networks for remote OS Identification

Questions?

Thank you!

